123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581 |
- ////////////////////////////////////////////////////////////////////////////////////////
- // Big Integer Library v. 5.5
- // Created 2000, last modified 2013
- // Leemon Baird
- // www.leemon.com
- //
- // Version history:
- // v 5.5 17 Mar 2013
- // - two lines of a form like "if (x<0) x+=n" had the "if" changed to "while" to
- // handle the case when x<-n. (Thanks to James Ansell for finding that bug)
- // v 5.4 3 Oct 2009
- // - added "var i" to greaterShift() so i is not global. (Thanks to PŽter Szab— for finding that bug)
- //
- // v 5.3 21 Sep 2009
- // - added randProbPrime(k) for probable primes
- // - unrolled loop in mont_ (slightly faster)
- // - millerRabin now takes a bigInt parameter rather than an int
- //
- // v 5.2 15 Sep 2009
- // - fixed capitalization in call to int2bigInt in randBigInt
- // (thanks to Emili Evripidou, Reinhold Behringer, and Samuel Macaleese for finding that bug)
- //
- // v 5.1 8 Oct 2007
- // - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters
- // - added functions GCD and randBigInt, which call GCD_ and randBigInt_
- // - fixed a bug found by Rob Visser (see comment with his name below)
- // - improved comments
- //
- // This file is public domain. You can use it for any purpose without restriction.
- // I do not guarantee that it is correct, so use it at your own risk. If you use
- // it for something interesting, I'd appreciate hearing about it. If you find
- // any bugs or make any improvements, I'd appreciate hearing about those too.
- // It would also be nice if my name and URL were left in the comments. But none
- // of that is required.
- //
- // This code defines a bigInt library for arbitrary-precision integers.
- // A bigInt is an array of integers storing the value in chunks of bpe bits,
- // little endian (buff[0] is the least significant word).
- // Negative bigInts are stored two's complement. Almost all the functions treat
- // bigInts as nonnegative. The few that view them as two's complement say so
- // in their comments. Some functions assume their parameters have at least one
- // leading zero element. Functions with an underscore at the end of the name put
- // their answer into one of the arrays passed in, and have unpredictable behavior
- // in case of overflow, so the caller must make sure the arrays are big enough to
- // hold the answer. But the average user should never have to call any of the
- // underscored functions. Each important underscored function has a wrapper function
- // of the same name without the underscore that takes care of the details for you.
- // For each underscored function where a parameter is modified, that same variable
- // must not be used as another argument too. So, you cannot square x by doing
- // multMod_(x,x,n). You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n).
- // Or simply use the multMod(x,x,n) function without the underscore, where
- // such issues never arise, because non-underscored functions never change
- // their parameters; they always allocate new memory for the answer that is returned.
- //
- // These functions are designed to avoid frequent dynamic memory allocation in the inner loop.
- // For most functions, if it needs a BigInt as a local variable it will actually use
- // a global, and will only allocate to it only when it's not the right size. This ensures
- // that when a function is called repeatedly with same-sized parameters, it only allocates
- // memory on the first call.
- //
- // Note that for cryptographic purposes, the calls to Math.random() must
- // be replaced with calls to a better pseudorandom number generator.
- //
- // In the following, "bigInt" means a bigInt with at least one leading zero element,
- // and "integer" means a nonnegative integer less than radix. In some cases, integer
- // can be negative. Negative bigInts are 2s complement.
- //
- // The following functions do not modify their inputs.
- // Those returning a bigInt, string, or Array will dynamically allocate memory for that value.
- // Those returning a boolean will return the integer 0 (false) or 1 (true).
- // Those returning boolean or int will not allocate memory except possibly on the first
- // time they're called with a given parameter size.
- //
- // bigInt add(x,y) //return (x+y) for bigInts x and y.
- // bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer.
- // string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95
- // int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros
- // bigInt dup(x) //return a copy of bigInt x
- // boolean equals(x,y) //is the bigInt x equal to the bigint y?
- // boolean equalsInt(x,y) //is bigint x equal to integer y?
- // bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed
- // Array findPrimes(n) //return array of all primes less than integer n
- // bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements).
- // boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts)
- // boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y?
- // bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements
- // bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
- // int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
- // boolean isZero(x) //is the bigInt x equal to zero?
- // boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is bigInt, 1<b<x)
- // boolean millerRabinInt(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is int, 1<b<x)
- // bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n.
- // int modInt(x,n) //return x mod n for bigInt x and integer n.
- // bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y<x.
- // bigInt multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
- // boolean negative(x) //is bigInt x negative?
- // bigInt powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
- // bigInt randBigInt(n,s) //return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
- // bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm.
- // bigInt randProbPrime(k) //return a new, random, k-bit, probable prime bigInt (probability it's composite less than 2^-80).
- // bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements
- // bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement
- // bigInt trim(x,k) //return a copy of x with exactly k leading zero elements
- //
- //
- // The following functions each have a non-underscored version, which most users should call instead.
- // These functions each write to a single parameter, and the caller is responsible for ensuring the array
- // passed in is large enough to hold the result.
- //
- // void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer
- // void add_(x,y) //do x=x+y for bigInts x and y
- // void copy_(x,y) //do x=y on bigInts x and y
- // void copyInt_(x,n) //do x=n on bigInt x and integer n
- // void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array).
- // boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist
- // void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array).
- // void mult_(x,y) //do x=x*y for bigInts x and y.
- // void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n.
- // void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1.
- // void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1.
- // void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb.
- // void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement.
- //
- // The following functions do NOT have a non-underscored version.
- // They each write a bigInt result to one or more parameters. The caller is responsible for
- // ensuring the arrays passed in are large enough to hold the results.
- //
- // void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe))
- // void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits.
- // void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r
- // int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array).
- // int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y
- // void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array).
- // void leftShift_(x,n) //left shift bigInt x by n bits. n<bpe.
- // void linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b
- // void linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys
- // void mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined)
- // void multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer.
- // void rightShift_(x,n) //right shift bigInt x by n bits. 0 <= n < bpe. (This never overflows its array).
- // void squareMod_(x,n) //do x=x*x mod n for bigInts x,n
- // void subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement.
- //
- // The following functions are based on algorithms from the _Handbook of Applied Cryptography_
- // powMod_() = algorithm 14.94, Montgomery exponentiation
- // eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_
- // GCD_() = algorothm 14.57, Lehmer's algorithm
- // mont_() = algorithm 14.36, Montgomery multiplication
- // divide_() = algorithm 14.20 Multiple-precision division
- // squareMod_() = algorithm 14.16 Multiple-precision squaring
- // randTruePrime_() = algorithm 4.62, Maurer's algorithm
- // millerRabin() = algorithm 4.24, Miller-Rabin algorithm
- //
- // Profiling shows:
- // randTruePrime_() spends:
- // 10% of its time in calls to powMod_()
- // 85% of its time in calls to millerRabin()
- // millerRabin() spends:
- // 99% of its time in calls to powMod_() (always with a base of 2)
- // powMod_() spends:
- // 94% of its time in calls to mont_() (almost always with x==y)
- //
- // This suggests there are several ways to speed up this library slightly:
- // - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window)
- // -- this should especially focus on being fast when raising 2 to a power mod n
- // - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test
- // - tune the parameters in randTruePrime_(), including c, m, and recLimit
- // - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking
- // within the loop when all the parameters are the same length.
- //
- // There are several ideas that look like they wouldn't help much at all:
- // - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway)
- // - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32)
- // - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square
- // followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that
- // method would be slower. This is unfortunate because the code currently spends almost all of its time
- // doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring
- // would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded
- // sentences that seem to imply it's faster to do a non-modular square followed by a single
- // Montgomery reduction, but that's obviously wrong.
- ////////////////////////////////////////////////////////////////////////////////////////
- //globals
- bpe=0; //bits stored per array element
- mask=0; //AND this with an array element to chop it down to bpe bits
- radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask.
- //the digits for converting to different bases
- digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-';
- digitsStr= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþ!@#$%^&*()[]{}|;:,.<>/?`~+-¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿";
- //initialize the global variables
- for (bpe=0; (1<<(bpe+1)) > (1<<bpe); bpe++); //bpe=number of bits in the mantissa on this platform
- bpe>>=1; //bpe=number of bits in one element of the array representing the bigInt
- mask=(1<<bpe)-1; //AND the mask with an integer to get its bpe least significant bits
- radix=mask+1; //2^bpe. a single 1 bit to the left of the first bit of mask
- one=int2bigInt(1,1,1); //constant used in powMod_()
- //the following global variables are scratchpad memory to
- //reduce dynamic memory allocation in the inner loop
- t=new Array(0);
- ss=t; //used in mult_()
- s0=t; //used in multMod_(), squareMod_()
- s1=t; //used in powMod_(), multMod_(), squareMod_()
- s2=t; //used in powMod_(), multMod_()
- s3=t; //used in powMod_()
- s4=t; s5=t; //used in mod_()
- s6=t; //used in bigInt2str()
- s7=t; //used in powMod_()
- T=t; //used in GCD_()
- sa=t; //used in mont_()
- mr_x1=t; mr_r=t; mr_a=t; //used in millerRabin()
- eg_v=t; eg_u=t; eg_A=t; eg_B=t; eg_C=t; eg_D=t; //used in eGCD_(), inverseMod_()
- md_q1=t; md_q2=t; md_q3=t; md_r=t; md_r1=t; md_r2=t; md_tt=t; //used in mod_()
- primes=t; pows=t; s_i=t; s_i2=t; s_R=t; s_rm=t; s_q=t; s_n1=t;
- s_a=t; s_r2=t; s_n=t; s_b=t; s_d=t; s_x1=t; s_x2=t, s_aa=t; //used in randTruePrime_()
-
- rpprb=t; //used in randProbPrimeRounds() (which also uses "primes")
- ////////////////////////////////////////////////////////////////////////////////////////
-
- //return array of all primes less than integer n
- function findPrimes(n) {
- var i,s,p,ans;
- s=new Array(n);
- for (i=0;i<n;i++)
- s[i]=0;
- s[0]=2;
- p=0; //first p elements of s are primes, the rest are a sieve
- for(;s[p]<n;) { //s[p] is the pth prime
- for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p]
- s[i]=1;
- p++;
- s[p]=s[p-1]+1;
- for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0)
- }
- ans=new Array(p);
- for(i=0;i<p;i++)
- ans[i]=s[i];
- return ans;
- }
- //does a single round of Miller-Rabin base b consider x to be a possible prime?
- //x is a bigInt, and b is an integer, with b<x
- function millerRabinInt(x,b) {
- if (mr_x1.length!=x.length) {
- mr_x1=dup(x);
- mr_r=dup(x);
- mr_a=dup(x);
- }
- copyInt_(mr_a,b);
- return millerRabin(x,mr_a);
- }
- //does a single round of Miller-Rabin base b consider x to be a possible prime?
- //x and b are bigInts with b<x
- function millerRabin(x,b) {
- var i,j,k,s;
- if (mr_x1.length!=x.length) {
- mr_x1=dup(x);
- mr_r=dup(x);
- mr_a=dup(x);
- }
- copy_(mr_a,b);
- copy_(mr_r,x);
- copy_(mr_x1,x);
- addInt_(mr_r,-1);
- addInt_(mr_x1,-1);
- //s=the highest power of two that divides mr_r
- k=0;
- for (i=0;i<mr_r.length;i++)
- for (j=1;j<mask;j<<=1)
- if (x[i] & j) {
- s=(k<mr_r.length+bpe ? k : 0);
- i=mr_r.length;
- j=mask;
- } else
- k++;
- if (s)
- rightShift_(mr_r,s);
- powMod_(mr_a,mr_r,x);
- if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) {
- j=1;
- while (j<=s-1 && !equals(mr_a,mr_x1)) {
- squareMod_(mr_a,x);
- if (equalsInt(mr_a,1)) {
- return 0;
- }
- j++;
- }
- if (!equals(mr_a,mr_x1)) {
- return 0;
- }
- }
- return 1;
- }
- //returns how many bits long the bigInt is, not counting leading zeros.
- function bitSize(x) {
- var j,z,w;
- for (j=x.length-1; (x[j]==0) && (j>0); j--);
- for (z=0,w=x[j]; w; (w>>=1),z++);
- z+=bpe*j;
- return z;
- }
- //return a copy of x with at least n elements, adding leading zeros if needed
- function expand(x,n) {
- var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
- copy_(ans,x);
- return ans;
- }
- //return a k-bit true random prime using Maurer's algorithm.
- function randTruePrime(k) {
- var ans=int2bigInt(0,k,0);
- randTruePrime_(ans,k);
- return trim(ans,1);
- }
- //return a k-bit random probable prime with probability of error < 2^-80
- function randProbPrime(k) {
- if (k>=600) return randProbPrimeRounds(k,2); //numbers from HAC table 4.3
- if (k>=550) return randProbPrimeRounds(k,4);
- if (k>=500) return randProbPrimeRounds(k,5);
- if (k>=400) return randProbPrimeRounds(k,6);
- if (k>=350) return randProbPrimeRounds(k,7);
- if (k>=300) return randProbPrimeRounds(k,9);
- if (k>=250) return randProbPrimeRounds(k,12); //numbers from HAC table 4.4
- if (k>=200) return randProbPrimeRounds(k,15);
- if (k>=150) return randProbPrimeRounds(k,18);
- if (k>=100) return randProbPrimeRounds(k,27);
- return randProbPrimeRounds(k,40); //number from HAC remark 4.26 (only an estimate)
- }
- //return a k-bit probable random prime using n rounds of Miller Rabin (after trial division with small primes)
- function randProbPrimeRounds(k,n) {
- var ans, i, divisible, B;
- B=30000; //B is largest prime to use in trial division
- ans=int2bigInt(0,k,0);
-
- //optimization: try larger and smaller B to find the best limit.
-
- if (primes.length==0)
- primes=findPrimes(30000); //check for divisibility by primes <=30000
- if (rpprb.length!=ans.length)
- rpprb=dup(ans);
- for (;;) { //keep trying random values for ans until one appears to be prime
- //optimization: pick a random number times L=2*3*5*...*p, plus a
- // random element of the list of all numbers in [0,L) not divisible by any prime up to p.
- // This can reduce the amount of random number generation.
-
- randBigInt_(ans,k,0); //ans = a random odd number to check
- ans[0] |= 1;
- divisible=0;
-
- //check ans for divisibility by small primes up to B
- for (i=0; (i<primes.length) && (primes[i]<=B); i++)
- if (modInt(ans,primes[i])==0 && !equalsInt(ans,primes[i])) {
- divisible=1;
- break;
- }
-
- //optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here.
-
- //do n rounds of Miller Rabin, with random bases less than ans
- for (i=0; i<n && !divisible; i++) {
- randBigInt_(rpprb,k,0);
- while(!greater(ans,rpprb)) //pick a random rpprb that's < ans
- randBigInt_(rpprb,k,0);
- if (!millerRabin(ans,rpprb))
- divisible=1;
- }
-
- if(!divisible)
- return ans;
- }
- }
- //return a new bigInt equal to (x mod n) for bigInts x and n.
- function mod(x,n) {
- var ans=dup(x);
- mod_(ans,n);
- return trim(ans,1);
- }
- //return (x+n) where x is a bigInt and n is an integer.
- function addInt(x,n) {
- var ans=expand(x,x.length+1);
- addInt_(ans,n);
- return trim(ans,1);
- }
- //return x*y for bigInts x and y. This is faster when y<x.
- function mult(x,y) {
- var ans=expand(x,x.length+y.length);
- mult_(ans,y);
- return trim(ans,1);
- }
- //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
- function powMod(x,y,n) {
- var ans=expand(x,n.length);
- powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't
- return trim(ans,1);
- }
- //return (x-y) for bigInts x and y. Negative answers will be 2s complement
- function sub(x,y) {
- var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
- sub_(ans,y);
- return trim(ans,1);
- }
- //return (x+y) for bigInts x and y.
- function add(x,y) {
- var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
- add_(ans,y);
- return trim(ans,1);
- }
- //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
- function inverseMod(x,n) {
- var ans=expand(x,n.length);
- var s;
- s=inverseMod_(ans,n);
- return s ? trim(ans,1) : null;
- }
- //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
- function multMod(x,y,n) {
- var ans=expand(x,n.length);
- multMod_(ans,y,n);
- return trim(ans,1);
- }
- //generate a k-bit true random prime using Maurer's algorithm,
- //and put it into ans. The bigInt ans must be large enough to hold it.
- function randTruePrime_(ans,k) {
- var c,m,pm,dd,j,r,B,divisible,z,zz,recSize;
- if (primes.length==0)
- primes=findPrimes(30000); //check for divisibility by primes <=30000
- if (pows.length==0) {
- pows=new Array(512);
- for (j=0;j<512;j++) {
- pows[j]=Math.pow(2,j/511.-1.);
- }
- }
- //c and m should be tuned for a particular machine and value of k, to maximize speed
- c=0.1; //c=0.1 in HAC
- m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
- recLimit=20; //stop recursion when k <=recLimit. Must have recLimit >= 2
- if (s_i2.length!=ans.length) {
- s_i2=dup(ans);
- s_R =dup(ans);
- s_n1=dup(ans);
- s_r2=dup(ans);
- s_d =dup(ans);
- s_x1=dup(ans);
- s_x2=dup(ans);
- s_b =dup(ans);
- s_n =dup(ans);
- s_i =dup(ans);
- s_rm=dup(ans);
- s_q =dup(ans);
- s_a =dup(ans);
- s_aa=dup(ans);
- }
- if (k <= recLimit) { //generate small random primes by trial division up to its square root
- pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k)
- copyInt_(ans,0);
- for (dd=1;dd;) {
- dd=0;
- ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k)); //random, k-bit, odd integer, with msb 1
- for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k)
- if (0==(ans[0]%primes[j])) {
- dd=1;
- break;
- }
- }
- }
- carry_(ans);
- return;
- }
- B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B).
- if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
- for (r=1; k-k*r<=m; )
- r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1);
- else
- r=.5;
- //simulation suggests the more complex algorithm using r=.333 is only slightly faster.
- recSize=Math.floor(r*k)+1;
- randTruePrime_(s_q,recSize);
- copyInt_(s_i2,0);
- s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2)
- divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q))
- z=bitSize(s_i);
- for (;;) {
- for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1]
- randBigInt_(s_R,z,0);
- if (greater(s_i,s_R))
- break;
- } //now s_R is in the range [0,s_i-1]
- addInt_(s_R,1); //now s_R is in the range [1,s_i]
- add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i]
- copy_(s_n,s_q);
- mult_(s_n,s_R);
- multInt_(s_n,2);
- addInt_(s_n,1); //s_n=2*s_R*s_q+1
-
- copy_(s_r2,s_R);
- multInt_(s_r2,2); //s_r2=2*s_R
- //check s_n for divisibility by small primes up to B
- for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++)
- if (modInt(s_n,primes[j])==0 && !equalsInt(s_n,primes[j])) {
- divisible=1;
- break;
- }
- if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2
- if (!millerRabinInt(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_
- divisible=1;
- if (!divisible) { //if it passes that test, continue checking s_n
- addInt_(s_n,-3);
- for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros
- for (zz=0,w=s_n[j]; w; (w>>=1),zz++);
- zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros
- for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1]
- randBigInt_(s_a,zz,0);
- if (greater(s_n,s_a))
- break;
- } //now s_a is in the range [0,s_n-1]
- addInt_(s_n,3); //now s_a is in the range [0,s_n-4]
- addInt_(s_a,2); //now s_a is in the range [2,s_n-2]
- copy_(s_b,s_a);
- copy_(s_n1,s_n);
- addInt_(s_n1,-1);
- powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n
- addInt_(s_b,-1);
- if (isZero(s_b)) {
- copy_(s_b,s_a);
- powMod_(s_b,s_r2,s_n);
- addInt_(s_b,-1);
- copy_(s_aa,s_n);
- copy_(s_d,s_b);
- GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime
- if (equalsInt(s_d,1)) {
- copy_(ans,s_aa);
- return; //if we've made it this far, then s_n is absolutely guaranteed to be prime
- }
- }
- }
- }
- }
- //Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
- function randBigInt(n,s) {
- var a,b;
- a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element
- b=int2bigInt(0,0,a);
- randBigInt_(b,n,s);
- return b;
- }
- //Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1.
- //Array b must be big enough to hold the result. Must have n>=1
- function randBigInt_(b,n,s) {
- var i,a;
- for (i=0;i<b.length;i++)
- b[i]=0;
- a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt
- for (i=0;i<a;i++) {
- b[i]=Math.floor(Math.random()*(1<<(bpe-1)));
- }
- b[a-1] &= (2<<((n-1)%bpe))-1;
- if (s==1)
- b[a-1] |= (1<<((n-1)%bpe));
- }
- //Return the greatest common divisor of bigInts x and y (each with same number of elements).
- function GCD(x,y) {
- var xc,yc;
- xc=dup(x);
- yc=dup(y);
- GCD_(xc,yc);
- return xc;
- }
- //set x to the greatest common divisor of bigInts x and y (each with same number of elements).
- //y is destroyed.
- function GCD_(x,y) {
- var i,xp,yp,A,B,C,D,q,sing;
- if (T.length!=x.length)
- T=dup(x);
- sing=1;
- while (sing) { //while y has nonzero elements other than y[0]
- sing=0;
- for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0
- if (y[i]) {
- sing=1;
- break;
- }
- if (!sing) break; //quit when y all zero elements except possibly y[0]
- for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x
- xp=x[i];
- yp=y[i];
- A=1; B=0; C=0; D=1;
- while ((yp+C) && (yp+D)) {
- q =Math.floor((xp+A)/(yp+C));
- qp=Math.floor((xp+B)/(yp+D));
- if (q!=qp)
- break;
- t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)
- t= B-q*D; B=D; D=t;
- t=xp-q*yp; xp=yp; yp=t;
- }
- if (B) {
- copy_(T,x);
- linComb_(x,y,A,B); //x=A*x+B*y
- linComb_(y,T,D,C); //y=D*y+C*T
- } else {
- mod_(x,y);
- copy_(T,x);
- copy_(x,y);
- copy_(y,T);
- }
- }
- if (y[0]==0)
- return;
- t=modInt(x,y[0]);
- copyInt_(x,y[0]);
- y[0]=t;
- while (y[0]) {
- x[0]%=y[0];
- t=x[0]; x[0]=y[0]; y[0]=t;
- }
- }
- //do x=x**(-1) mod n, for bigInts x and n.
- //If no inverse exists, it sets x to zero and returns 0, else it returns 1.
- //The x array must be at least as large as the n array.
- function inverseMod_(x,n) {
- var k=1+2*Math.max(x.length,n.length);
- if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist
- copyInt_(x,0);
- return 0;
- }
- if (eg_u.length!=k) {
- eg_u=new Array(k);
- eg_v=new Array(k);
- eg_A=new Array(k);
- eg_B=new Array(k);
- eg_C=new Array(k);
- eg_D=new Array(k);
- }
- copy_(eg_u,x);
- copy_(eg_v,n);
- copyInt_(eg_A,1);
- copyInt_(eg_B,0);
- copyInt_(eg_C,0);
- copyInt_(eg_D,1);
- for (;;) {
- while(!(eg_u[0]&1)) { //while eg_u is even
- halve_(eg_u);
- if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2
- halve_(eg_A);
- halve_(eg_B);
- } else {
- add_(eg_A,n); halve_(eg_A);
- sub_(eg_B,x); halve_(eg_B);
- }
- }
- while (!(eg_v[0]&1)) { //while eg_v is even
- halve_(eg_v);
- if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2
- halve_(eg_C);
- halve_(eg_D);
- } else {
- add_(eg_C,n); halve_(eg_C);
- sub_(eg_D,x); halve_(eg_D);
- }
- }
- if (!greater(eg_v,eg_u)) { //eg_v <= eg_u
- sub_(eg_u,eg_v);
- sub_(eg_A,eg_C);
- sub_(eg_B,eg_D);
- } else { //eg_v > eg_u
- sub_(eg_v,eg_u);
- sub_(eg_C,eg_A);
- sub_(eg_D,eg_B);
- }
-
- if (equalsInt(eg_u,0)) {
- while (negative(eg_C)) //make sure answer is nonnegative
- add_(eg_C,n);
- copy_(x,eg_C);
- if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse
- copyInt_(x,0);
- return 0;
- }
- return 1;
- }
- }
- }
- //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
- function inverseModInt(x,n) {
- var a=1,b=0,t;
- for (;;) {
- if (x==1) return a;
- if (x==0) return 0;
- b-=a*Math.floor(n/x);
- n%=x;
- if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to +=
- if (n==0) return 0;
- a-=b*Math.floor(x/n);
- x%=n;
- }
- }
- //this deprecated function is for backward compatibility only.
- function inverseModInt_(x,n) {
- return inverseModInt(x,n);
- }
- //Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that:
- // v = GCD_(x,y) = a*x-b*y
- //The bigInts v, a, b, must have exactly as many elements as the larger of x and y.
- function eGCD_(x,y,v,a,b) {
- var g=0;
- var k=Math.max(x.length,y.length);
- if (eg_u.length!=k) {
- eg_u=new Array(k);
- eg_A=new Array(k);
- eg_B=new Array(k);
- eg_C=new Array(k);
- eg_D=new Array(k);
- }
- while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even
- halve_(x);
- halve_(y);
- g++;
- }
- copy_(eg_u,x);
- copy_(v,y);
- copyInt_(eg_A,1);
- copyInt_(eg_B,0);
- copyInt_(eg_C,0);
- copyInt_(eg_D,1);
- for (;;) {
- while(!(eg_u[0]&1)) { //while u is even
- halve_(eg_u);
- if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2
- halve_(eg_A);
- halve_(eg_B);
- } else {
- add_(eg_A,y); halve_(eg_A);
- sub_(eg_B,x); halve_(eg_B);
- }
- }
- while (!(v[0]&1)) { //while v is even
- halve_(v);
- if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2
- halve_(eg_C);
- halve_(eg_D);
- } else {
- add_(eg_C,y); halve_(eg_C);
- sub_(eg_D,x); halve_(eg_D);
- }
- }
- if (!greater(v,eg_u)) { //v<=u
- sub_(eg_u,v);
- sub_(eg_A,eg_C);
- sub_(eg_B,eg_D);
- } else { //v>u
- sub_(v,eg_u);
- sub_(eg_C,eg_A);
- sub_(eg_D,eg_B);
- }
- if (equalsInt(eg_u,0)) {
- while (negative(eg_C)) { //make sure a (C) is nonnegative
- add_(eg_C,y);
- sub_(eg_D,x);
- }
- multInt_(eg_D,-1); ///make sure b (D) is nonnegative
- copy_(a,eg_C);
- copy_(b,eg_D);
- leftShift_(v,g);
- return;
- }
- }
- }
- //is bigInt x negative?
- function negative(x) {
- return ((x[x.length-1]>>(bpe-1))&1);
- }
- //is (x << (shift*bpe)) > y?
- //x and y are nonnegative bigInts
- //shift is a nonnegative integer
- function greaterShift(x,y,shift) {
- var i, kx=x.length, ky=y.length;
- k=((kx+shift)<ky) ? (kx+shift) : ky;
- for (i=ky-1-shift; i<kx && i>=0; i++) {
- if (x[i]>0)
- return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
- }
- for (i=kx-1+shift; i<ky; i++){
- if (y[i]>0)
- return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
- }
- for (i=k-1; i>=shift; i--){
- if (x[i-shift]>y[i]) {
- return 1;
- } else if(x[i-shift]<y[i]) {
- return 0 ;
- }
- }
- return 0;
- }
- //is x > y? (x and y both nonnegative)
- function greater(x,y) {
- var i;
- var k=(x.length<y.length) ? x.length : y.length;
- for (i=x.length;i<y.length;i++)
- if (y[i])
- return 0; //y has more digits
- for (i=y.length;i<x.length;i++){
- if (x[i])
- return 1; //x has more digits
- }
- for (i=k-1;i>=0;i--){
- if (x[i]>y[i]){
- return 1;
- } else if (x[i]<y[i]){
- return 0;
- }
- }
- return 0;
- }
- //divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints.
- //x must have at least one leading zero element.
- //y must be nonzero.
- //q and r must be arrays that are exactly the same length as x. (Or q can have more).
- //Must have x.length >= y.length >= 2.
- function divide_(x,y,q,r) {
- var kx, ky;
- var i,j,y1,y2,c,a,b;
- copy_(r,x);
- for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros
- //normalize: ensure the most significant element of y has its highest bit set
- b=y[ky-1];
- for (a=0; b; a++)
- b>>=1;
- a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element
- leftShift_(y,a); //multiply both by 1<<a now, then divide both by that at the end
- leftShift_(r,a);
- //Rob Visser discovered a bug: the following line was originally just before the normalization.
- for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); //kx is number of elements in normalized x, not including leading zeros
- copyInt_(q,0); // q=0
- while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) {
- subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky)
- q[kx-ky]++; // q[kx-ky]++;
- } // }
- for (i=kx-1; i>=ky; i--) {
- if (r[i]==y[ky-1]){
- q[i-ky]=mask;
- }
- else{
- q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);
- }
- //The following for(;;) loop is equivalent to the commented while loop,
- //except that the uncommented version avoids overflow.
- //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
- // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
- // q[i-ky]--;
- for (;;) {
- y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
- c=y2>>bpe;
- y2=y2 & mask;
- y1=c+q[i-ky]*y[ky-1];
- c=y1>>bpe;
- y1=y1 & mask;
- if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]){
- q[i-ky]--;
- }
- else{
- break;
- }
- }
- linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky)
- if (negative(r)) {
- addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky)
- q[i-ky]--;
- }
- }
- rightShift_(y,a); //undo the normalization step
- rightShift_(r,a); //undo the normalization step
- }
- //do carries and borrows so each element of the bigInt x fits in bpe bits.
- function carry_(x) {
- var i,k,c,b;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i];
- b=0;
- if (c<0) {
- b=-(c>>bpe);
- c+=b*radix;
- }
- x[i]=c & mask;
- c=(c>>bpe)-b;
- }
- }
- //return x mod n for bigInt x and integer n.
- function modInt(x,n) {
- var i,c=0;
- for (i=x.length-1; i>=0; i--)
- c=(c*radix+x[i])%n;
- return c;
- }
- //convert the integer t into a bigInt with at least the given number of bits.
- //the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word)
- //Pad the array with leading zeros so that it has at least minSize elements.
- //There will always be at least one leading 0 element.
- function int2bigInt(t,bits,minSize) {
- var i,k;
- k=Math.ceil(bits/bpe)+1;
- k=minSize>k ? minSize : k;
- buff=new Array(k);
- copyInt_(buff,t);
- return buff;
- }
- //return the bigInt given a string representation in a given base.
- //Pad the array with leading zeros so that it has at least minSize elements.
- //If base=-1, then it reads in a space-separated list of array elements in decimal.
- //The array will always have at least one leading zero, unless base=-1.
- function str2bigInt(s,base,minSize) {
- var d, i, j, x, y, kk;
- var k=s.length;
- if (base==-1) { //comma-separated list of array elements in decimal
- x=new Array(0);
- for (;;) {
- y=new Array(x.length+1);
- for (i=0;i<x.length;i++)
- y[i+1]=x[i];
- y[0]=parseInt(s,10);
- x=y;
- d=s.indexOf(',',0);
- if (d<1)
- break;
- s=s.substring(d+1);
- if (s.length==0)
- break;
- }
- if (x.length<minSize) {
- y=new Array(minSize);
- copy_(y,x);
- return y;
- }
- return x;
- }
- x=int2bigInt(0,base*k,0);
- for (i=0;i<k;i++) {
- d=digitsStr.indexOf(s.substring(i,i+1),0);
- if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36
- d-=26;
- if (d>=base || d<0) { //stop at first illegal character
- break;
- }
- multInt_(x,base);
- addInt_(x,d);
- }
- for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros
- k=minSize>k+1 ? minSize : k+1;
- y=new Array(k);
- kk=k<x.length ? k : x.length;
- for (i=0;i<kk;i++)
- y[i]=x[i];
- for (;i<k;i++)
- y[i]=0;
- return y;
- }
- //is bigint x equal to integer y?
- //y must have less than bpe bits
- function equalsInt(x,y) {
- var i;
- if (x[0]!=y)
- return 0;
- for (i=1;i<x.length;i++)
- if (x[i])
- return 0;
- return 1;
- }
- //are bigints x and y equal?
- //this works even if x and y are different lengths and have arbitrarily many leading zeros
- function equals(x,y) {
- var i;
- var k=x.length<y.length ? x.length : y.length;
- for (i=0;i<k;i++)
- if (x[i]!=y[i])
- return 0;
- if (x.length>y.length) {
- for (;i<x.length;i++)
- if (x[i])
- return 0;
- } else {
- for (;i<y.length;i++)
- if (y[i])
- return 0;
- }
- return 1;
- }
- //is the bigInt x equal to zero?
- function isZero(x) {
- var i;
- for (i=0;i<x.length;i++)
- if (x[i])
- return 0;
- return 1;
- }
- //convert a bigInt into a string in a given base, from base 2 up to base 95.
- //Base -1 prints the contents of the array representing the number.
- function bigInt2str(x,base) {
- if(digitsStr.length-1 < base) {
- var str = "base "+(digitsStr.length-1)+" is max";
- throw new Error(str);
- }
- var i,t,s="";
- if (s6.length!=x.length) {
- s6=dup(x);
- }
- else{
- copy_(s6,x);
- }
- if (base==-1) { //return the list of array contents
- for (i=x.length-1;i>0;i--){
- s+=x[i]+',';
- }
- s+=x[0];
- }
- else { //return it in the given base
- while (!isZero(s6)) {
- t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base);
- s=digitsStr.substring(t,t+1)+s;
- }
- }
- if (s.length==0){
- s="0";
- }
- return s;
- }
- //returns a duplicate of bigInt x
- function dup(x) {
- var i;
- buff=new Array(x.length);
- copy_(buff,x);
- return buff;
- }
- //do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y).
- function copy_(x,y) {
- var i;
- var k=x.length<y.length ? x.length : y.length;
- for (i=0;i<k;i++)
- x[i]=y[i];
- for (i=k;i<x.length;i++)
- x[i]=0;
- }
- //do x=y on bigInt x and integer y.
- function copyInt_(x,n) {
- var i,c;
- for (c=n,i=0;i<x.length;i++) {
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+n where x is a bigInt and n is an integer.
- //x must be large enough to hold the result.
- function addInt_(x,n) {
- var i,k,c,b;
- x[0]+=n;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i];
- b=0;
- if (c<0) {
- b=-(c>>bpe);
- c+=b*radix;
- }
- x[i]=c & mask;
- c=(c>>bpe)-b;
- if (!c) return; //stop carrying as soon as the carry is zero
- }
- }
- //right shift bigInt x by n bits. 0 <= n < bpe.
- function rightShift_(x,n) {
- var i;
- var k=Math.floor(n/bpe);
- if (k) {
- for (i=0;i<x.length-k;i++) //right shift x by k elements
- x[i]=x[i+k];
- for (;i<x.length;i++)
- x[i]=0;
- n%=bpe;
- }
- for (i=0;i<x.length-1;i++) {
- x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
- }
- x[i]>>=n;
- }
- //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
- function halve_(x) {
- var i;
- for (i=0;i<x.length-1;i++) {
- x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
- }
- x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same
- }
- //left shift bigInt x by n bits.
- function leftShift_(x,n) {
- var i;
- var k=Math.floor(n/bpe);
- if (k) {
- for (i=x.length; i>=k; i--) //left shift x by k elements
- x[i]=x[i-k];
- for (;i>=0;i--)
- x[i]=0;
- n%=bpe;
- }
- if (!n)
- return;
- for (i=x.length-1;i>0;i--) {
- x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
- }
- x[i]=mask & (x[i]<<n);
- }
- //do x=x*n where x is a bigInt and n is an integer.
- //x must be large enough to hold the result.
- function multInt_(x,n) {
- var i,k,c,b;
- if (!n)
- return;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i]*n;
- b=0;
- if (c<0) {
- b=-(c>>bpe);
- c+=b*radix;
- }
- x[i]=c & mask;
- c=(c>>bpe)-b;
- }
- }
- //do x=floor(x/n) for bigInt x and integer n, and return the remainder
- function divInt_(x,n) {
- var i,r=0,s;
- for (i=x.length-1;i>=0;i--) {
- s=r*radix+x[i];
- x[i]=Math.floor(s/n);
- r=s%n;
- }
- return r;
- }
- //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
- //x must be large enough to hold the answer.
- function linComb_(x,y,a,b) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- kk=x.length;
- for (c=0,i=0;i<k;i++) {
- c+=a*x[i]+b*y[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;i<kk;i++) {
- c+=a*x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
- //x must be large enough to hold the answer.
- function linCombShift_(x,y,b,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]+b*y[i-ys];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
- //x must be large enough to hold the answer.
- function addShift_(x,y,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]+y[i-ys];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
- //x must be large enough to hold the answer.
- function subShift_(x,y,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]-y[i-ys];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x-y for bigInts x and y.
- //x must be large enough to hold the answer.
- //negative answers will be 2s complement
- function sub_(x,y) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- for (c=0,i=0;i<k;i++) {
- c+=x[i]-y[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<x.length;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+y for bigInts x and y.
- //x must be large enough to hold the answer.
- function add_(x,y) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- for (c=0,i=0;i<k;i++) {
- c+=x[i]+y[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<x.length;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x*y for bigInts x and y. This is faster when y<x.
- function mult_(x,y) {
- var i;
- if (ss.length!=2*x.length)
- ss=new Array(2*x.length);
- copyInt_(ss,0);
- for (i=0;i<y.length;i++)
- if (y[i])
- linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe))
- copy_(x,ss);
- }
- //do x=x mod n for bigInts x and n.
- function mod_(x,n) {
- if (s4.length!=x.length){
- s4=dup(x);
- }
- else{
- copy_(s4,x);
- }
- if (s5.length!=x.length){
- s5=dup(x);
- }
- divide_(s4,n,s5,x); //x = remainder of s4 / n
- }
- //do x=x*y mod n for bigInts x,y,n.
- //for greater speed, let y<x.
- function multMod_(x,y,n) {
- var i;
- if (s0.length!=2*x.length)
- s0=new Array(2*x.length);
- copyInt_(s0,0);
- for (i=0;i<y.length;i++)
- if (y[i])
- linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe))
- mod_(s0,n);
- copy_(x,s0);
- }
- //do x=x*x mod n for bigInts x,n.
- function squareMod_(x,n) {
- var i,j,d,c,kx,kn,k;
- for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x
- k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n
- if (s0.length!=k)
- s0=new Array(k);
- copyInt_(s0,0);
- for (i=0;i<kx;i++) {
- c=s0[2*i]+x[i]*x[i];
- s0[2*i]=c & mask;
- c>>=bpe;
- for (j=i+1;j<kx;j++) {
- c=s0[i+j]+2*x[i]*x[j]+c;
- s0[i+j]=(c & mask);
- c>>=bpe;
- }
- s0[i+kx]=c;
- }
- mod_(s0,n);
- copy_(x,s0);
- }
- //return x with exactly k leading zero elements
- function trim(x,k) {
- var i,y;
- for (i=x.length; i>0 && !x[i-1]; i--);
- y=new Array(i+k);
- copy_(y,x);
- return y;
- }
- //do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1.
- //this is faster when n is odd. x usually needs to have as many elements as n.
- function powMod_(x,y,n) {
- var k1,k2,kn,np;
- if(s7.length!=n.length)
- s7=dup(n);
- //for even modulus, use a simple square-and-multiply algorithm,
- //rather than using the more complex Montgomery algorithm.
- if ((n[0]&1)==0) {
- copy_(s7,x);
- copyInt_(x,1);
- while(!equalsInt(y,0)) {
- if (y[0]&1)
- multMod_(x,s7,n);
- divInt_(y,2);
- squareMod_(s7,n);
- }
- return;
- }
- //calculate np from n for the Montgomery multiplications
- copyInt_(s7,0);
- for (kn=n.length;kn>0 && !n[kn-1];kn--);
- np=radix-inverseModInt(modInt(n,radix),radix);
- s7[kn]=1;
- multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n
- if (s3.length!=x.length){
- s3=dup(x);
- }
- else{
- copy_(s3,x);
- }
- for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y
- if (y[k1]==0) { //anything to the 0th power is 1
- copyInt_(x,1);
- return;
- }
- for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1]
- for (;;) {
- if (!(k2>>=1)) { //look at next bit of y
- k1--;
- if (k1<0) {
- mont_(x,one,n,np);
- return;
- }
- k2=1<<(bpe-1);
- }
- mont_(x,x,n,np);
- if (k2 & y[k1]) //if next bit is a 1
- mont_(x,s3,n,np);
- }
- }
- //do x=x*y*Ri mod n for bigInts x,y,n,
- // where Ri = 2**(-kn*bpe) mod n, and kn is the
- // number of elements in the n array, not
- // counting leading zeros.
- //x array must have at least as many elemnts as the n array
- //It's OK if x and y are the same variable.
- //must have:
- // x,y < n
- // n is odd
- // np = -(n^(-1)) mod radix
- function mont_(x,y,n,np) {
- var i,j,c,ui,t,ks;
- var kn=n.length;
- var ky=y.length;
- if (sa.length!=kn)
- sa=new Array(kn);
-
- copyInt_(sa,0);
- for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n
- for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y
- ks=sa.length-1; //sa will never have more than this many nonzero elements.
- //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large numbers
- for (i=0; i<kn; i++) {
- t=sa[0]+x[i]*y[0];
- ui=((t & mask) * np) & mask; //the inner "& mask" was needed on Safari (but not MSIE) at one time
- c=(t+ui*n[0]) >> bpe;
- t=x[i];
-
- //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe. Loop is unrolled 5-fold for speed
- j=1;
- for (;j<ky-4;) { c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<ky;) { c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<kn-4;) { c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<kn;) { c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<ks;) { c+=sa[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- sa[j-1]=c & mask;
- }
- if (!greater(n,sa))
- sub_(sa,n);
- copy_(x,sa);
- }
- BigInt = module.exports = {
- 'add': add,
- 'addInt': addInt,
- 'bigInt2str': bigInt2str,
- 'bitSize': bitSize,
- 'copy': copy_,
- 'copyInt': copyInt_,
- 'dup': dup,
- 'div': divide_,
- 'equals': equals,
- 'equalsInt': equalsInt,
- 'expand': expand,
- 'findPrimes': findPrimes,
- 'GCD': GCD,
- 'greater': greater,
- 'greaterShift': greaterShift,
- 'int2bigInt': int2bigInt,
- 'inverseMod': inverseMod,
- 'inverseModInt': inverseModInt,
- 'isZero': isZero,
- 'millerRabin': millerRabin,
- 'millerRabinInt': millerRabinInt,
- 'mod': mod,
- 'modInt': modInt,
- 'mult': mult_,
- 'multMod': multMod,
- 'negative': negative,
- 'powMod': powMod,
- 'randBigInt': randBigInt,
- 'randTruePrime': randTruePrime,
- 'randProbPrime': randProbPrime,
- 'leftShift': leftShift_,
- 'rightShift': rightShift_,
- 'str2bigInt': str2bigInt,
- 'sub': sub,
- 'trim': trim
- };
|