12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406 |
- (function(reciever){
- //globals
- var bpe=0; //bits stored per array element
- var mask=0; //AND this with an array element to chop it down to bpe bits
- var radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask.
- //the digits for converting to different bases
- //var digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-';
- var digitsStr= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþ!@#$%^&*()[]{}|;:,.<>/?`~+-¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿";
- //initialize the global variables
- for (bpe=0; (1<<(bpe+1)) > (1<<bpe); bpe++); //bpe=number of bits in the mantissa on this platform
- bpe>>=1; //bpe=number of bits in one element of the array representing the bigInt
- mask=(1<<bpe)-1; //AND the mask with an integer to get its bpe least significant bits
- radix=mask+1; //2^bpe. a single 1 bit to the left of the first bit of mask
- var one=int2bigInt(1,1,1); //constant used in powMod_()
- //the following global variables are scratchpad memory to
- //reduce dynamic memory allocation in the inner loop
- var t=new Array(0);
- var ss=t; //used in mult_()
- var s0=t; //used in multMod_(), squareMod_()
- var s1=t; //used in powMod_(), multMod_(), squareMod_()
- var s2=t; //used in powMod_(), multMod_()
- var s3=t; //used in powMod_()
- var s4=t; var s5=t; //used in mod_()
- var s6=t; //used in bigInt2str()
- var s7=t; //used in powMod_()
- var T=t; //used in GCD_()
- var sa=t; //used in mont_()
- var mr_x1=t; var mr_r=t; var mr_a=t; //used in millerRabin()
- var eg_v=t; var eg_u=t; var eg_A=t; var eg_B=t; var eg_C=t; var eg_D=t; //used in eGCD_(), inverseMod_()
- var md_q1=t; var md_q2=t; var md_q3=t; var md_r=t; var md_r1=t; var md_r2=t; var md_tt=t; //used in mod_()
- var primes=t; var pows=t; var s_i=t; var s_i2=t; var s_R=t; var s_rm=t; var s_q=t; var s_n1=t;
- var s_a=t; var s_r2=t; var s_n=t; var s_b=t; var s_d=t; var s_x1=t; var s_x2=t; var s_aa=t; //used in randTruePrime_()
-
- var rpprb=t; //used in randProbPrimeRounds() (which also uses "primes")
- ////////////////////////////////////////////////////////////////////////////////////////
-
- //return array of all primes less than integer n
- function findPrimes(n) {
- var i,s,p,ans;
- s=new Array(n);
- for (i=0;i<n;i++)
- s[i]=0;
- s[0]=2;
- p=0; //first p elements of s are primes, the rest are a sieve
- for(;s[p]<n;) { //s[p] is the pth prime
- for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p]
- s[i]=1;
- p++;
- s[p]=s[p-1]+1;
- for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0)
- }
- ans=new Array(p);
- for(i=0;i<p;i++)
- ans[i]=s[i];
- return ans;
- }
- //does a single round of Miller-Rabin base b consider x to be a possible prime?
- //x is a bigInt, and b is an integer, with b<x
- function millerRabinInt(x,b) {
- if (mr_x1.length!=x.length) {
- mr_x1=dup(x);
- mr_r=dup(x);
- mr_a=dup(x);
- }
- copyInt_(mr_a,b);
- return millerRabin(x,mr_a);
- }
- //does a single round of Miller-Rabin base b consider x to be a possible prime?
- //x and b are bigInts with b<x
- function millerRabin(x,b) {
- var i,j,k,s;
- if (mr_x1.length!=x.length) {
- mr_x1=dup(x);
- mr_r=dup(x);
- mr_a=dup(x);
- }
- copy_(mr_a,b);
- copy_(mr_r,x);
- copy_(mr_x1,x);
- addInt_(mr_r,-1);
- addInt_(mr_x1,-1);
- //s=the highest power of two that divides mr_r
- k=0;
- for (i=0;i<mr_r.length;i++)
- for (j=1;j<mask;j<<=1)
- if (x[i] & j) {
- s=(k<mr_r.length+bpe ? k : 0);
- i=mr_r.length;
- j=mask;
- } else
- k++;
- if (s)
- rightShift_(mr_r,s);
- powMod_(mr_a,mr_r,x);
- if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) {
- j=1;
- while (j<=s-1 && !equals(mr_a,mr_x1)) {
- squareMod_(mr_a,x);
- if (equalsInt(mr_a,1)) {
- return 0;
- }
- j++;
- }
- if (!equals(mr_a,mr_x1)) {
- return 0;
- }
- }
- return 1;
- }
- //returns how many bits long the bigInt is, not counting leading zeros.
- function bitSize(x) {
- var j,z,w;
- for (j=x.length-1; (x[j]==0) && (j>0); j--);
- for (z=0,w=x[j]; w; (w>>=1),z++);
- z+=bpe*j;
- return z;
- }
- //return a copy of x with at least n elements, adding leading zeros if needed
- function expand(x,n) {
- var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
- copy_(ans,x);
- return ans;
- }
- //return a k-bit true random prime using Maurer's algorithm.
- function randTruePrime(k) {
- var ans=int2bigInt(0,k,0);
- randTruePrime_(ans,k);
- return trim(ans,1);
- }
- //return a k-bit random probable prime with probability of error < 2^-80
- function randProbPrime(k) {
- if (k>=600) return randProbPrimeRounds(k,2); //numbers from HAC table 4.3
- if (k>=550) return randProbPrimeRounds(k,4);
- if (k>=500) return randProbPrimeRounds(k,5);
- if (k>=400) return randProbPrimeRounds(k,6);
- if (k>=350) return randProbPrimeRounds(k,7);
- if (k>=300) return randProbPrimeRounds(k,9);
- if (k>=250) return randProbPrimeRounds(k,12); //numbers from HAC table 4.4
- if (k>=200) return randProbPrimeRounds(k,15);
- if (k>=150) return randProbPrimeRounds(k,18);
- if (k>=100) return randProbPrimeRounds(k,27);
- return randProbPrimeRounds(k,40); //number from HAC remark 4.26 (only an estimate)
- }
- //return a k-bit probable random prime using n rounds of Miller Rabin (after trial division with small primes)
- function randProbPrimeRounds(k,n) {
- var ans, i, divisible, B;
- B=30000; //B is largest prime to use in trial division
- ans=int2bigInt(0,k,0);
-
- //optimization: try larger and smaller B to find the best limit.
-
- if (primes.length==0)
- primes=findPrimes(30000); //check for divisibility by primes <=30000
- if (rpprb.length!=ans.length)
- rpprb=dup(ans);
- for (;;) { //keep trying random values for ans until one appears to be prime
- //optimization: pick a random number times L=2*3*5*...*p, plus a
- // random element of the list of all numbers in [0,L) not divisible by any prime up to p.
- // This can reduce the amount of random number generation.
-
- randBigInt_(ans,k,0); //ans = a random odd number to check
- ans[0] |= 1;
- divisible=0;
-
- //check ans for divisibility by small primes up to B
- for (i=0; (i<primes.length) && (primes[i]<=B); i++)
- if (modInt(ans,primes[i])==0 && !equalsInt(ans,primes[i])) {
- divisible=1;
- break;
- }
-
- //optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here.
-
- //do n rounds of Miller Rabin, with random bases less than ans
- for (i=0; i<n && !divisible; i++) {
- randBigInt_(rpprb,k,0);
- while(!greater(ans,rpprb)) //pick a random rpprb that's < ans
- randBigInt_(rpprb,k,0);
- if (!millerRabin(ans,rpprb))
- divisible=1;
- }
-
- if(!divisible)
- return ans;
- }
- }
- //return a new bigInt equal to (x mod n) for bigInts x and n.
- function mod(x,n) {
- var ans=dup(x);
- mod_(ans,n);
- return trim(ans,1);
- }
- //return (x+n) where x is a bigInt and n is an integer.
- function addInt(x,n) {
- var ans=expand(x,x.length+1);
- addInt_(ans,n);
- return trim(ans,1);
- }
- //return x*y for bigInts x and y. This is faster when y<x.
- function mult(x,y) {
- var ans=expand(x,x.length+y.length);
- mult_(ans,y);
- return trim(ans,1);
- }
- //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
- function powMod(x,y,n) {
- var ans=expand(x,n.length);
- powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't
- return trim(ans,1);
- }
- //return (x-y) for bigInts x and y. Negative answers will be 2s complement
- function sub(x,y) {
- var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
- sub_(ans,y);
- return trim(ans,1);
- }
- //return (x+y) for bigInts x and y.
- function add(x,y) {
- var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
- add_(ans,y);
- return trim(ans,1);
- }
- //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
- function inverseMod(x,n) {
- var ans=expand(x,n.length);
- var s;
- s=inverseMod_(ans,n);
- return s ? trim(ans,1) : null;
- }
- //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
- function multMod(x,y,n) {
- var ans=expand(x,n.length);
- multMod_(ans,y,n);
- return trim(ans,1);
- }
- //generate a k-bit true random prime using Maurer's algorithm,
- //and put it into ans. The bigInt ans must be large enough to hold it.
- function randTruePrime_(ans,k) {
- var c,m,pm,dd,j,r,B,divisible,z,zz,recSize;
- if (primes.length==0)
- primes=findPrimes(30000); //check for divisibility by primes <=30000
- if (pows.length==0) {
- pows=new Array(512);
- for (j=0;j<512;j++) {
- pows[j]=Math.pow(2,j/511.-1.);
- }
- }
- //c and m should be tuned for a particular machine and value of k, to maximize speed
- c=0.1; //c=0.1 in HAC
- m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
- recLimit=20; //stop recursion when k <=recLimit. Must have recLimit >= 2
- if (s_i2.length!=ans.length) {
- s_i2=dup(ans);
- s_R =dup(ans);
- s_n1=dup(ans);
- s_r2=dup(ans);
- s_d =dup(ans);
- s_x1=dup(ans);
- s_x2=dup(ans);
- s_b =dup(ans);
- s_n =dup(ans);
- s_i =dup(ans);
- s_rm=dup(ans);
- s_q =dup(ans);
- s_a =dup(ans);
- s_aa=dup(ans);
- }
- if (k <= recLimit) { //generate small random primes by trial division up to its square root
- pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k)
- copyInt_(ans,0);
- for (dd=1;dd;) {
- dd=0;
- ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k)); //random, k-bit, odd integer, with msb 1
- for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k)
- if (0==(ans[0]%primes[j])) {
- dd=1;
- break;
- }
- }
- }
- carry_(ans);
- return;
- }
- B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B).
- if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
- for (r=1; k-k*r<=m; )
- r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1);
- else
- r=.5;
- //simulation suggests the more complex algorithm using r=.333 is only slightly faster.
- recSize=Math.floor(r*k)+1;
- randTruePrime_(s_q,recSize);
- copyInt_(s_i2,0);
- s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2)
- divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q))
- z=bitSize(s_i);
- for (;;) {
- for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1]
- randBigInt_(s_R,z,0);
- if (greater(s_i,s_R))
- break;
- } //now s_R is in the range [0,s_i-1]
- addInt_(s_R,1); //now s_R is in the range [1,s_i]
- add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i]
- copy_(s_n,s_q);
- mult_(s_n,s_R);
- multInt_(s_n,2);
- addInt_(s_n,1); //s_n=2*s_R*s_q+1
-
- copy_(s_r2,s_R);
- multInt_(s_r2,2); //s_r2=2*s_R
- //check s_n for divisibility by small primes up to B
- for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++)
- if (modInt(s_n,primes[j])==0 && !equalsInt(s_n,primes[j])) {
- divisible=1;
- break;
- }
- if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2
- if (!millerRabinInt(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_
- divisible=1;
- if (!divisible) { //if it passes that test, continue checking s_n
- addInt_(s_n,-3);
- for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros
- for (zz=0,w=s_n[j]; w; (w>>=1),zz++);
- zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros
- for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1]
- randBigInt_(s_a,zz,0);
- if (greater(s_n,s_a))
- break;
- } //now s_a is in the range [0,s_n-1]
- addInt_(s_n,3); //now s_a is in the range [0,s_n-4]
- addInt_(s_a,2); //now s_a is in the range [2,s_n-2]
- copy_(s_b,s_a);
- copy_(s_n1,s_n);
- addInt_(s_n1,-1);
- powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n
- addInt_(s_b,-1);
- if (isZero(s_b)) {
- copy_(s_b,s_a);
- powMod_(s_b,s_r2,s_n);
- addInt_(s_b,-1);
- copy_(s_aa,s_n);
- copy_(s_d,s_b);
- GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime
- if (equalsInt(s_d,1)) {
- copy_(ans,s_aa);
- return; //if we've made it this far, then s_n is absolutely guaranteed to be prime
- }
- }
- }
- }
- }
- //Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
- function randBigInt(n,s) {
- var a,b;
- a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element
- b=int2bigInt(0,0,a);
- randBigInt_(b,n,s);
- return b;
- }
- //Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1.
- //Array b must be big enough to hold the result. Must have n>=1
- function randBigInt_(b,n,s) {
- var i,a;
- for (i=0;i<b.length;i++)
- b[i]=0;
- a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt
- for (i=0;i<a;i++) {
- b[i]=Math.floor(Math.random()*(1<<(bpe-1)));
- }
- b[a-1] &= (2<<((n-1)%bpe))-1;
- if (s==1)
- b[a-1] |= (1<<((n-1)%bpe));
- }
- //Return the greatest common divisor of bigInts x and y (each with same number of elements).
- function GCD(x,y) {
- var xc,yc;
- xc=dup(x);
- yc=dup(y);
- GCD_(xc,yc);
- return xc;
- }
- //set x to the greatest common divisor of bigInts x and y (each with same number of elements).
- //y is destroyed.
- function GCD_(x,y) {
- var i,xp,yp,A,B,C,D,q,sing;
- if (T.length!=x.length)
- T=dup(x);
- sing=1;
- while (sing) { //while y has nonzero elements other than y[0]
- sing=0;
- for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0
- if (y[i]) {
- sing=1;
- break;
- }
- if (!sing) break; //quit when y all zero elements except possibly y[0]
- for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x
- xp=x[i];
- yp=y[i];
- A=1; B=0; C=0; D=1;
- while ((yp+C) && (yp+D)) {
- q =Math.floor((xp+A)/(yp+C));
- qp=Math.floor((xp+B)/(yp+D));
- if (q!=qp)
- break;
- t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)
- t= B-q*D; B=D; D=t;
- t=xp-q*yp; xp=yp; yp=t;
- }
- if (B) {
- copy_(T,x);
- linComb_(x,y,A,B); //x=A*x+B*y
- linComb_(y,T,D,C); //y=D*y+C*T
- } else {
- mod_(x,y);
- copy_(T,x);
- copy_(x,y);
- copy_(y,T);
- }
- }
- if (y[0]==0)
- return;
- t=modInt(x,y[0]);
- copyInt_(x,y[0]);
- y[0]=t;
- while (y[0]) {
- x[0]%=y[0];
- t=x[0]; x[0]=y[0]; y[0]=t;
- }
- }
- //do x=x**(-1) mod n, for bigInts x and n.
- //If no inverse exists, it sets x to zero and returns 0, else it returns 1.
- //The x array must be at least as large as the n array.
- function inverseMod_(x,n) {
- var k=1+2*Math.max(x.length,n.length);
- if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist
- copyInt_(x,0);
- return 0;
- }
- if (eg_u.length!=k) {
- eg_u=new Array(k);
- eg_v=new Array(k);
- eg_A=new Array(k);
- eg_B=new Array(k);
- eg_C=new Array(k);
- eg_D=new Array(k);
- }
- copy_(eg_u,x);
- copy_(eg_v,n);
- copyInt_(eg_A,1);
- copyInt_(eg_B,0);
- copyInt_(eg_C,0);
- copyInt_(eg_D,1);
- for (;;) {
- while(!(eg_u[0]&1)) { //while eg_u is even
- halve_(eg_u);
- if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2
- halve_(eg_A);
- halve_(eg_B);
- } else {
- add_(eg_A,n); halve_(eg_A);
- sub_(eg_B,x); halve_(eg_B);
- }
- }
- while (!(eg_v[0]&1)) { //while eg_v is even
- halve_(eg_v);
- if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2
- halve_(eg_C);
- halve_(eg_D);
- } else {
- add_(eg_C,n); halve_(eg_C);
- sub_(eg_D,x); halve_(eg_D);
- }
- }
- if (!greater(eg_v,eg_u)) { //eg_v <= eg_u
- sub_(eg_u,eg_v);
- sub_(eg_A,eg_C);
- sub_(eg_B,eg_D);
- } else { //eg_v > eg_u
- sub_(eg_v,eg_u);
- sub_(eg_C,eg_A);
- sub_(eg_D,eg_B);
- }
-
- if (equalsInt(eg_u,0)) {
- while (negative(eg_C)) //make sure answer is nonnegative
- add_(eg_C,n);
- copy_(x,eg_C);
- if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse
- copyInt_(x,0);
- return 0;
- }
- return 1;
- }
- }
- }
- //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
- function inverseModInt(x,n) {
- var a=1,b=0,t;
- for (;;) {
- if (x==1) return a;
- if (x==0) return 0;
- b-=a*Math.floor(n/x);
- n%=x;
- if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to +=
- if (n==0) return 0;
- a-=b*Math.floor(x/n);
- x%=n;
- }
- }
- //this deprecated function is for backward compatibility only.
- function inverseModInt_(x,n) {
- return inverseModInt(x,n);
- }
- //Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that:
- // v = GCD_(x,y) = a*x-b*y
- //The bigInts v, a, b, must have exactly as many elements as the larger of x and y.
- function eGCD_(x,y,v,a,b) {
- var g=0;
- var k=Math.max(x.length,y.length);
- if (eg_u.length!=k) {
- eg_u=new Array(k);
- eg_A=new Array(k);
- eg_B=new Array(k);
- eg_C=new Array(k);
- eg_D=new Array(k);
- }
- while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even
- halve_(x);
- halve_(y);
- g++;
- }
- copy_(eg_u,x);
- copy_(v,y);
- copyInt_(eg_A,1);
- copyInt_(eg_B,0);
- copyInt_(eg_C,0);
- copyInt_(eg_D,1);
- for (;;) {
- while(!(eg_u[0]&1)) { //while u is even
- halve_(eg_u);
- if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2
- halve_(eg_A);
- halve_(eg_B);
- } else {
- add_(eg_A,y); halve_(eg_A);
- sub_(eg_B,x); halve_(eg_B);
- }
- }
- while (!(v[0]&1)) { //while v is even
- halve_(v);
- if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2
- halve_(eg_C);
- halve_(eg_D);
- } else {
- add_(eg_C,y); halve_(eg_C);
- sub_(eg_D,x); halve_(eg_D);
- }
- }
- if (!greater(v,eg_u)) { //v<=u
- sub_(eg_u,v);
- sub_(eg_A,eg_C);
- sub_(eg_B,eg_D);
- } else { //v>u
- sub_(v,eg_u);
- sub_(eg_C,eg_A);
- sub_(eg_D,eg_B);
- }
- if (equalsInt(eg_u,0)) {
- while (negative(eg_C)) { //make sure a (C) is nonnegative
- add_(eg_C,y);
- sub_(eg_D,x);
- }
- multInt_(eg_D,-1); ///make sure b (D) is nonnegative
- copy_(a,eg_C);
- copy_(b,eg_D);
- leftShift_(v,g);
- return;
- }
- }
- }
- //is bigInt x negative?
- function negative(x) {
- return ((x[x.length-1]>>(bpe-1))&1);
- }
- //is (x << (shift*bpe)) > y?
- //x and y are nonnegative bigInts
- //shift is a nonnegative integer
- function greaterShift(x,y,shift) {
- var i, kx=x.length, ky=y.length;
- k=((kx+shift)<ky) ? (kx+shift) : ky;
- for (i=ky-1-shift; i<kx && i>=0; i++) {
- if (x[i]>0)
- return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
- }
- for (i=kx-1+shift; i<ky; i++){
- if (y[i]>0)
- return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
- }
- for (i=k-1; i>=shift; i--){
- if (x[i-shift]>y[i]) {
- return 1;
- } else if(x[i-shift]<y[i]) {
- return 0 ;
- }
- }
- return 0;
- }
- //is x > y? (x and y both nonnegative)
- function greater(x,y) {
- var i;
- var k=(x.length<y.length) ? x.length : y.length;
- for (i=x.length;i<y.length;i++)
- if (y[i])
- return 0; //y has more digits
- for (i=y.length;i<x.length;i++){
- if (x[i])
- return 1; //x has more digits
- }
- for (i=k-1;i>=0;i--){
- if (x[i]>y[i]){
- return 1;
- } else if (x[i]<y[i]){
- return 0;
- }
- }
- return 0;
- }
- //divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints.
- //x must have at least one leading zero element.
- //y must be nonzero.
- //q and r must be arrays that are exactly the same length as x. (Or q can have more).
- //Must have x.length >= y.length >= 2.
- function divide_(x,y,q,r) {
- var kx, ky;
- var i,j,y1,y2,c,a,b;
- copy_(r,x);
- for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros
- //normalize: ensure the most significant element of y has its highest bit set
- b=y[ky-1];
- for (a=0; b; a++)
- b>>=1;
- a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element
- leftShift_(y,a); //multiply both by 1<<a now, then divide both by that at the end
- leftShift_(r,a);
- //Rob Visser discovered a bug: the following line was originally just before the normalization.
- for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); //kx is number of elements in normalized x, not including leading zeros
- copyInt_(q,0); // q=0
- while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) {
- subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky)
- q[kx-ky]++; // q[kx-ky]++;
- } // }
- for (i=kx-1; i>=ky; i--) {
- if (r[i]==y[ky-1]){
- q[i-ky]=mask;
- }
- else{
- q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);
- }
- //The following for(;;) loop is equivalent to the commented while loop,
- //except that the uncommented version avoids overflow.
- //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
- // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
- // q[i-ky]--;
- for (;;) {
- y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
- c=y2>>bpe;
- y2=y2 & mask;
- y1=c+q[i-ky]*y[ky-1];
- c=y1>>bpe;
- y1=y1 & mask;
- if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]){
- q[i-ky]--;
- }
- else{
- break;
- }
- }
- linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky)
- if (negative(r)) {
- addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky)
- q[i-ky]--;
- }
- }
- rightShift_(y,a); //undo the normalization step
- rightShift_(r,a); //undo the normalization step
- }
- //do carries and borrows so each element of the bigInt x fits in bpe bits.
- function carry_(x) {
- var i,k,c,b;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i];
- b=0;
- if (c<0) {
- b=-(c>>bpe);
- c+=b*radix;
- }
- x[i]=c & mask;
- c=(c>>bpe)-b;
- }
- }
- //return x mod n for bigInt x and integer n.
- function modInt(x,n) {
- var i,c=0;
- for (i=x.length-1; i>=0; i--)
- c=(c*radix+x[i])%n;
- return c;
- }
- //convert the integer t into a bigInt with at least the given number of bits.
- //the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word)
- //Pad the array with leading zeros so that it has at least minSize elements.
- //There will always be at least one leading 0 element.
- function int2bigInt(t,bits,minSize) {
- var i,k;
- k=Math.ceil(bits/bpe)+1;
- k=minSize>k ? minSize : k;
- buff=new Array(k);
- copyInt_(buff,t);
- return buff;
- }
- //return the bigInt given a string representation in a given base.
- //Pad the array with leading zeros so that it has at least minSize elements.
- //If base=-1, then it reads in a space-separated list of array elements in decimal.
- //The array will always have at least one leading zero, unless base=-1.
- function str2bigInt(s,base,minSize) {
- var d, i, j, x, y, kk;
- var k=s.length;
- if (base==-1) { //comma-separated list of array elements in decimal
- x=new Array(0);
- for (;;) {
- y=new Array(x.length+1);
- for (i=0;i<x.length;i++)
- y[i+1]=x[i];
- y[0]=parseInt(s,10);
- x=y;
- d=s.indexOf(',',0);
- if (d<1)
- break;
- s=s.substring(d+1);
- if (s.length==0)
- break;
- }
- if (x.length<minSize) {
- y=new Array(minSize);
- copy_(y,x);
- return y;
- }
- return x;
- }
- x=int2bigInt(0,base*k,0);
- for (i=0;i<k;i++) {
- d=digitsStr.indexOf(s.substring(i,i+1),0);
- if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36
- d-=26;
- if (d>=base || d<0) { //stop at first illegal character
- break;
- }
- multInt_(x,base);
- addInt_(x,d);
- }
- for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros
- k=minSize>k+1 ? minSize : k+1;
- y=new Array(k);
- kk=k<x.length ? k : x.length;
- for (i=0;i<kk;i++)
- y[i]=x[i];
- for (;i<k;i++)
- y[i]=0;
- return y;
- }
- //is bigint x equal to integer y?
- //y must have less than bpe bits
- function equalsInt(x,y) {
- var i;
- if (x[0]!=y)
- return 0;
- for (i=1;i<x.length;i++)
- if (x[i])
- return 0;
- return 1;
- }
- //are bigints x and y equal?
- //this works even if x and y are different lengths and have arbitrarily many leading zeros
- function equals(x,y) {
- var i;
- var k=x.length<y.length ? x.length : y.length;
- for (i=0;i<k;i++)
- if (x[i]!=y[i])
- return 0;
- if (x.length>y.length) {
- for (;i<x.length;i++)
- if (x[i])
- return 0;
- } else {
- for (;i<y.length;i++)
- if (y[i])
- return 0;
- }
- return 1;
- }
- //is the bigInt x equal to zero?
- function isZero(x) {
- var i;
- for (i=0;i<x.length;i++)
- if (x[i])
- return 0;
- return 1;
- }
- //convert a bigInt into a string in a given base, from base 2 up to base 95.
- //Base -1 prints the contents of the array representing the number.
- function bigInt2str(x,base) {
- if(digitsStr.length-1 < base) {
- var str = "base "+(digitsStr.length-1)+" is max";
- throw new Error(str);
- }
- var i,t,s="";
- if (s6.length!=x.length) {
- s6=dup(x);
- }
- else{
- copy_(s6,x);
- }
- if (base==-1) { //return the list of array contents
- for (i=x.length-1;i>0;i--){
- s+=x[i]+',';
- }
- s+=x[0];
- }
- else { //return it in the given base
- while (!isZero(s6)) {
- t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base);
- s=digitsStr.substring(t,t+1)+s;
- }
- }
- if (s.length==0){
- s="0";
- }
- return s;
- }
- //returns a duplicate of bigInt x
- function dup(x) {
- var i;
- buff=new Array(x.length);
- copy_(buff,x);
- return buff;
- }
- //do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y).
- function copy_(x,y) {
- var i;
- var k=x.length<y.length ? x.length : y.length;
- for (i=0;i<k;i++)
- x[i]=y[i];
- for (i=k;i<x.length;i++)
- x[i]=0;
- }
- //do x=y on bigInt x and integer y.
- function copyInt_(x,n) {
- var i,c;
- for (c=n,i=0;i<x.length;i++) {
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+n where x is a bigInt and n is an integer.
- //x must be large enough to hold the result.
- function addInt_(x,n) {
- var i,k,c,b;
- x[0]+=n;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i];
- b=0;
- if (c<0) {
- b=-(c>>bpe);
- c+=b*radix;
- }
- x[i]=c & mask;
- c=(c>>bpe)-b;
- if (!c) return; //stop carrying as soon as the carry is zero
- }
- }
- //right shift bigInt x by n bits. 0 <= n < bpe.
- function rightShift_(x,n) {
- var i;
- var k=Math.floor(n/bpe);
- if (k) {
- for (i=0;i<x.length-k;i++) //right shift x by k elements
- x[i]=x[i+k];
- for (;i<x.length;i++)
- x[i]=0;
- n%=bpe;
- }
- for (i=0;i<x.length-1;i++) {
- x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
- }
- x[i]>>=n;
- }
- //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
- function halve_(x) {
- var i;
- for (i=0;i<x.length-1;i++) {
- x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
- }
- x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same
- }
- //left shift bigInt x by n bits.
- function leftShift_(x,n) {
- var i;
- var k=Math.floor(n/bpe);
- if (k) {
- for (i=x.length; i>=k; i--) //left shift x by k elements
- x[i]=x[i-k];
- for (;i>=0;i--)
- x[i]=0;
- n%=bpe;
- }
- if (!n)
- return;
- for (i=x.length-1;i>0;i--) {
- x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
- }
- x[i]=mask & (x[i]<<n);
- }
- //do x=x*n where x is a bigInt and n is an integer.
- //x must be large enough to hold the result.
- function multInt_(x,n) {
- var i,k,c,b;
- if (!n)
- return;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i]*n;
- b=0;
- if (c<0) {
- b=-(c>>bpe);
- c+=b*radix;
- }
- x[i]=c & mask;
- c=(c>>bpe)-b;
- }
- }
- //do x=floor(x/n) for bigInt x and integer n, and return the remainder
- function divInt_(x,n) {
- var i,r=0,s;
- for (i=x.length-1;i>=0;i--) {
- s=r*radix+x[i];
- x[i]=Math.floor(s/n);
- r=s%n;
- }
- return r;
- }
- //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
- //x must be large enough to hold the answer.
- function linComb_(x,y,a,b) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- kk=x.length;
- for (c=0,i=0;i<k;i++) {
- c+=a*x[i]+b*y[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;i<kk;i++) {
- c+=a*x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
- //x must be large enough to hold the answer.
- function linCombShift_(x,y,b,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]+b*y[i-ys];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
- //x must be large enough to hold the answer.
- function addShift_(x,y,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]+y[i-ys];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
- //x must be large enough to hold the answer.
- function subShift_(x,y,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]-y[i-ys];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x-y for bigInts x and y.
- //x must be large enough to hold the answer.
- //negative answers will be 2s complement
- function sub_(x,y) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- for (c=0,i=0;i<k;i++) {
- c+=x[i]-y[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<x.length;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+y for bigInts x and y.
- //x must be large enough to hold the answer.
- function add_(x,y) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- for (c=0,i=0;i<k;i++) {
- c+=x[i]+y[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- for (i=k;c && i<x.length;i++) {
- c+=x[i];
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x*y for bigInts x and y. This is faster when y<x.
- function mult_(x,y) {
- var i;
- if (ss.length!=2*x.length)
- ss=new Array(2*x.length);
- copyInt_(ss,0);
- for (i=0;i<y.length;i++)
- if (y[i])
- linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe))
- copy_(x,ss);
- }
- //do x=x mod n for bigInts x and n.
- function mod_(x,n) {
- if (s4.length!=x.length){
- s4=dup(x);
- }
- else{
- copy_(s4,x);
- }
- if (s5.length!=x.length){
- s5=dup(x);
- }
- divide_(s4,n,s5,x); //x = remainder of s4 / n
- }
- //do x=x*y mod n for bigInts x,y,n.
- //for greater speed, let y<x.
- function multMod_(x,y,n) {
- var i;
- if (s0.length!=2*x.length)
- s0=new Array(2*x.length);
- copyInt_(s0,0);
- for (i=0;i<y.length;i++)
- if (y[i])
- linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe))
- mod_(s0,n);
- copy_(x,s0);
- }
- //do x=x*x mod n for bigInts x,n.
- function squareMod_(x,n) {
- var i,j,d,c,kx,kn,k;
- for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x
- k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n
- if (s0.length!=k)
- s0=new Array(k);
- copyInt_(s0,0);
- for (i=0;i<kx;i++) {
- c=s0[2*i]+x[i]*x[i];
- s0[2*i]=c & mask;
- c>>=bpe;
- for (j=i+1;j<kx;j++) {
- c=s0[i+j]+2*x[i]*x[j]+c;
- s0[i+j]=(c & mask);
- c>>=bpe;
- }
- s0[i+kx]=c;
- }
- mod_(s0,n);
- copy_(x,s0);
- }
- //return x with exactly k leading zero elements
- function trim(x,k) {
- var i,y;
- for (i=x.length; i>0 && !x[i-1]; i--);
- y=new Array(i+k);
- copy_(y,x);
- return y;
- }
- //do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1.
- //this is faster when n is odd. x usually needs to have as many elements as n.
- function powMod_(x,y,n) {
- var k1,k2,kn,np;
- if(s7.length!=n.length)
- s7=dup(n);
- //for even modulus, use a simple square-and-multiply algorithm,
- //rather than using the more complex Montgomery algorithm.
- if ((n[0]&1)==0) {
- copy_(s7,x);
- copyInt_(x,1);
- while(!equalsInt(y,0)) {
- if (y[0]&1)
- multMod_(x,s7,n);
- divInt_(y,2);
- squareMod_(s7,n);
- }
- return;
- }
- //calculate np from n for the Montgomery multiplications
- copyInt_(s7,0);
- for (kn=n.length;kn>0 && !n[kn-1];kn--);
- np=radix-inverseModInt(modInt(n,radix),radix);
- s7[kn]=1;
- multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n
- if (s3.length!=x.length){
- s3=dup(x);
- }
- else{
- copy_(s3,x);
- }
- for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y
- if (y[k1]==0) { //anything to the 0th power is 1
- copyInt_(x,1);
- return;
- }
- for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1]
- for (;;) {
- if (!(k2>>=1)) { //look at next bit of y
- k1--;
- if (k1<0) {
- mont_(x,one,n,np);
- return;
- }
- k2=1<<(bpe-1);
- }
- mont_(x,x,n,np);
- if (k2 & y[k1]) //if next bit is a 1
- mont_(x,s3,n,np);
- }
- }
- //do x=x*y*Ri mod n for bigInts x,y,n,
- // where Ri = 2**(-kn*bpe) mod n, and kn is the
- // number of elements in the n array, not
- // counting leading zeros.
- //x array must have at least as many elemnts as the n array
- //It's OK if x and y are the same variable.
- //must have:
- // x,y < n
- // n is odd
- // np = -(n^(-1)) mod radix
- function mont_(x,y,n,np) {
- var i,j,c,ui,t,ks;
- var kn=n.length;
- var ky=y.length;
- if (sa.length!=kn)
- sa=new Array(kn);
-
- copyInt_(sa,0);
- for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n
- for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y
- ks=sa.length-1; //sa will never have more than this many nonzero elements.
- //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large numbers
- for (i=0; i<kn; i++) {
- t=sa[0]+x[i]*y[0];
- ui=((t & mask) * np) & mask; //the inner "& mask" was needed on Safari (but not MSIE) at one time
- c=(t+ui*n[0]) >> bpe;
- t=x[i];
-
- //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe. Loop is unrolled 5-fold for speed
- j=1;
- for (;j<ky-4;) { c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<ky;) { c+=sa[j]+ui*n[j]+t*y[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<kn-4;) { c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++;
- c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<kn;) { c+=sa[j]+ui*n[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- for (;j<ks;) { c+=sa[j]; sa[j-1]=c & mask; c>>=bpe; j++; }
- sa[j-1]=c & mask;
- }
- if (!greater(n,sa))
- sub_(sa,n);
- copy_(x,sa);
- }
- BigInt = {
- 'add': add,
- 'addInt': addInt,
- 'bigInt2str': bigInt2str,
- 'bitSize': bitSize,
- 'copy': copy_,
- 'copyInt': copyInt_,
- 'dup': dup,
- 'div': divide_,
- 'equals': equals,
- 'equalsInt': equalsInt,
- 'expand': expand,
- 'findPrimes': findPrimes,
- 'GCD': GCD,
- 'greater': greater,
- 'greaterShift': greaterShift,
- 'int2bigInt': int2bigInt,
- 'inverseMod': inverseMod,
- 'inverseModInt': inverseModInt,
- 'isZero': isZero,
- 'millerRabin': millerRabin,
- 'millerRabinInt': millerRabinInt,
- 'mod': mod,
- 'modInt': modInt,
- 'mult': mult_,
- 'multMod': multMod,
- 'negative': negative,
- 'powMod': powMod,
- 'randBigInt': randBigInt,
- 'randTruePrime': randTruePrime,
- 'randProbPrime': randProbPrime,
- 'leftShift': leftShift_,
- 'rightShift': rightShift_,
- 'str2bigInt': str2bigInt,
- 'sub': sub,
- 'trim': trim
- };
- for(var i in BigInt){
- reciever[i] = BigInt[i]
- }
- })(module.exports)
|